Đề bài
Cho \(u = u\left( x \right),v = v\left( x \right),v\left( x \right) \ne 0\); với k là hằng số. Hãy chọn khẳng định sai ?
-
A.
\({\left( {\frac{1}{v}} \right)^\prime } = - \frac{{v'}}{{{v^{}}}}\)
-
B.
\({\left( {k.u} \right)^\prime } = k.u'\)
-
C.
\({\left( {k.u} \right)^\prime } = k.u'\)
-
D.
\(\left( {u.v} \right)' = u'.v + u.v'\)
Phương pháp giải
Áp dụng công thức tính đạo hàm
\({\left( {\frac{1}{v}} \right)^\prime } = - \frac{{v'}}{{{v^2}}}\)
\({\left( {k.u} \right)^\prime } = k.u'\)
\({\left( {k.u} \right)^\prime } = k.u'\)
\(\left( {u.v} \right)' = u'.v + u.v'\)
Đáp án A.
Đáp án : A