Cho \(x;y;z \ne 0\) thỏa mãn \(\frac{{x - y - z}}{x} = \frac{{y - z - x}}{y} = \frac{{z - x - y}}{z}\).
Tính giá trị biểu thức: \(S = \left( {1 + \frac{y}{x}} \right)\left( {1 + \frac{z}{y}} \right)\left( {1 + \frac{x}{z}} \right)\).
- Biến đổi các biểu thức hữu tỉ
- Sử dụng tính chất của dãy tỉ số bằng nhau. Từ đó đưa bài toán ban đầu về bài toán đơn giản hơn
- Thực hiện tính toán
Ta có
\(\frac{{x - y - z}}{x} = \frac{{y - z - x}}{y} = \frac{{z - x - y}}{z}\)
\(1 - \frac{{y + z}}{x} = 1 - \frac{{z + x}}{y} = 1 - \frac{{x + y}}{z}\)
\( - \frac{{y + z}}{x} = - \frac{{z + x}}{y} = - \frac{{x + y}}{z}\)
\(\frac{{y + z}}{x} = \frac{{z + x}}{y} = \frac{{x + y}}{z} = \frac{{y + z + z + x + x + y}}{{x + y + z}} = 2\)
\(\left\{ {\begin{array}{*{20}{l}}{y + z = 2x}\\{z + x = 2y}\\{x + y = 2z}\end{array}} \right.\)
\(S = \left( {1 + \frac{y}{x}} \right)\left( {1 + \frac{z}{y}} \right)\left( {1 + \frac{x}{z}} \right) = \left( {\frac{{x + y}}{x}} \right)\left( {\frac{{y + z}}{y}} \right)\left( {\frac{{z + x}}{z}} \right) = \frac{{2z}}{x} \cdot \frac{{2x}}{y} \cdot \frac{{2y}}{z} = 8\)
Vậy \(S = 8\).