Cho x,y,z là ba số thỏa mãn điều kiện: 4x^2 + 2y^2 + — Không quảng cáo

Cho \(x,y,z\) là ba số thỏa mãn điều kiện \(4{x^2} + 2{y^2} + 2{z^2} - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0 \) Tính


Đề bài

Cho \(x,y,z\) là ba số thỏa mãn điều kiện:

\(4{x^2} + 2{y^2} + 2{z^2} - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0.\)

Tính giá trị của biểu thức \(S = {\left( {x - 4} \right)^{2023}} + {\left( {y - 4} \right)^{2025}} + {\left( {z - 4} \right)^{2027}}.\)

Phương pháp giải

Sử dụng hằng đẳng thức bình phương của một tổng, hiệu hai bình phương để tính x, y, z.

Từ đó thay giá trị của x, y, z vào S để tính giá trị biểu thức.

Ta có: \(4{x^2} + 2{y^2} + 2{z^2} - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0\)

\(4{x^2} - 4x\left( {y + z} \right) + \left( {{y^2} + 2yz + {z^2}} \right) + {z^2} - 6y - 10z + 34 = 0\)

\(\left[ {4{x^2} - 4x\left( {y + z} \right) + {{\left( {y + z} \right)}^2}} \right] + \left( {{y^2} - 6y + 9} \right) + \left( {{z^2} - 10z + 25} \right) = 0\)

\({\left( {2x - y - z} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 5} \right)^2} = 0\,\,\left( * \right)\)

Với mọi \(x,y,z\) ta có: \({\left( {2x - y - z} \right)^2} \ge 0,\,\,{\left( {y - 3} \right)^2} \ge 0,\,\,{\left( {z - 5} \right)^2} \ge 0\)

Do đó \(\left( * \right)\) xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {2x - y - z} \right)^2} = 0\\{\left( {y - 3} \right)^2} = 0\\{\left( {z - 5} \right)^2} = 0\end{array} \right.\)

Hay \(\left\{ \begin{array}{l}2x - y - z = 0\\y - 3 = 0\\z - 5 = 0\end{array} \right.\), tức là \(\left\{ \begin{array}{l}x = 4\\y = 3\\z = 5\end{array} \right.\)

Khi đó \(S = {\left( {4 - 4} \right)^{2023}} + {\left( {3 - 4} \right)^{2025}} + {\left( {5 - 4} \right)^{2027}} = 0 - 1 + 1 = 0.\)