Chọn câu sai — Không quảng cáo

Chọn câu sai


Đề bài

Chọn câu sai.

  • A.

    \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).

  • B.

    \({({x-1}) ^3}\; + 2({x-1})  = ({x-1}) [{({x-1}) ^2}\; + 2]\).

  • C.

    \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).

  • D.

    \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).

Phương pháp giải
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

Ta có

+) \({\left( {x-1} \right)^3} + 2{\left( {x-1} \right)^2}\)

\(= {\left( {x-1} \right)^2}\left( {x-1} \right) + 2{\left( {x-1} \right)^2}\\ = {\left( {x-1} \right)^2}(x-1 + 2\\ = {\left( {x-1} \right)^2}\left( {x + 1} \right)\)

nên A đúng

+) \( {{{\left( {x-1} \right)}^3} + 2\left( {x-1} \right)}\)

\({ = \left( {x-1} \right).{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2]\)

nên B đúng

+) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)

\({ = \left( {x-1} \right){{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)\left( {x-1} \right)}\\{ = \left( {x-1} \right)[{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)]}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2x-2]\)

nên C đúng

+) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)

\({ = {{\left( {x-1} \right)}^2}\left( {x + 1} \right)}\\ \ne \left( {x-1} \right)\left( {x + 3} \right)\)

nên D sai

Đáp án : D