Đề bài
Chọn đáp án đúng.
Cho \(a > 0,a \ne 1,b > 0\). Với mọi số nguyên dương \(n \ge 2\) ta có:
-
A.
\({\log _a}\sqrt[n]{b} = n{\log _a}b\).
-
B.
\({\log _a}\sqrt[n]{b} = \frac{1}{n}{\log _a}b\).
-
C.
\({\log _a}\sqrt[n]{b} = \frac{1}{n}{\log _b}a\).
-
D.
\({\log _a}\sqrt[n]{b} = n{\log _b}a\).
Phương pháp giải
Cho \(a > 0,a \ne 1,b > 0\). Với mọi số nguyên dương \(n \ge 2\) ta có \({\log _a}\sqrt[n]{b} = \frac{1}{n}{\log _a}b\).
Cho \(a > 0,a \ne 1,b > 0\). Với mọi số nguyên dương \(n \ge 2\) ta có \({\log _a}\sqrt[n]{b} = \frac{1}{n}{\log _a}b\).
Đáp án B.
Đáp án : B