Chọn khẳng định đúng nhất:
-
A.
Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại
-
B.
Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại
-
C.
Cả A và B đều đúng
-
D.
Cả A và B đều sai
+ Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại
+ Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.
Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại, trùng nhau khi \(a = a',b = b'\) và ngược lại
Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.
Đáp án : C