Chox1 vàx2 là hai giá trị thỏa mãn 4x - 5 - 2x5 - X = 0 — Không quảng cáo

Và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - X} \right) = 0\) Khi đó \({x_1}\ + {x_2}\ \)bằng


Đề bài

Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng

  • A.
    5.
  • B.
    7.
  • C.
    3.
  • D.
    -2.
Phương pháp giải
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung; sau đó giải phương trình để tìm x.
Ta có:

\(\begin{array}{l}4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\\ \Leftrightarrow 4\left( {x - {\rm{ 5}}} \right)\; + \;2x\left( {x - {\rm{ 5}}} \right) = 0\\ \Leftrightarrow \left( {x - {\rm{ 5}}} \right)\left( {{\rm{4}} + 2x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\4 + 2x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x =  - 2\end{array} \right.\\ \Rightarrow {x_1} + {x_2} = 5 - 2 = 3\end{array}\)

Đáp án : C