Chứng minh biểu thức \(A = - {x^2} + \frac{2}{3}x - 1\) luôn luôn âm với mọi giá trị của biến
Sử dụng hằng đẳng thức để biến đổi biểu thức.
\(\begin{array}{l}A = - {x^2} + \frac{2}{3}x - 1\\ = - \left( {{x^2} - 2x.\frac{1}{3} + \frac{1}{9} - \frac{1}{9} + 1} \right)\\ = - \left[ {{x^2} - 2x.\frac{1}{3} + {{\left( {\frac{1}{3}} \right)}^2} + \frac{8}{9}} \right]\\ = - \left[ {{{\left( {x - \frac{1}{3}} \right)}^2} + \frac{8}{9}} \right] = - {\left( {x - \frac{1}{3}} \right)^2} - \frac{8}{9}\end{array}\)
Ta có \( - {\left( {x - \frac{1}{3}} \right)^2} \le 0\) nên \( - {\left( {x - \frac{1}{3}} \right)^2} - \frac{8}{9} < 0\) với mọi x.
Vậy A < 0 hay luôn luôn âm với mọi giá trị x.