Có ba chiếc hộp: Hộp I có 4 bi đỏ và 5 bi xanh, hộp II có 3 — Không quảng cáo

Có ba chiếc hộp hộp I có 4 bi đỏ và 5 bi xanh, hộp II có 3 bi đỏ và 2 bi đen, hộp III có 5 bi đỏ


Đề bài

Có ba chiếc hộp: hộp I có 4 bi đỏ và 5 bi xanh, hộp II có 3 bi đỏ và 2 bi đen, hộp III có 5 bi đỏ và 3 bi vàng. Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được màu đỏ bằng

  • A.
    \(\frac{{601}}{{1080}}\).
  • B.
    \(\frac{6}{{11}}\).
  • C.
    \(\frac{1}{6}\).
  • D.
    \(\frac{{61}}{{360}}\).
Phương pháp giải

Sử dụng xác suất có điều kiện.

Lấy ngẫu nhiên một hộp.

Gọi \({C_1}\) là biến cố lấy được hộp I;

Gọi \({C_2}\) là biến cố lấy được hộp II;

Gọi \({C_3}\) là biến cố lấy được hộp III.

Suy ra \(P\left( {{C_1}} \right) = P\left( {{C_2}} \right) = P\left( {{C_3}} \right) = \frac{1}{3}\).

Gọi \(C\) là biến cố "lấy ngẫu nhiên một hộp, trong hộp đó lại lấy ngẫu nhiên một viên bi và được bi màu đỏ”.

Ta có: \(C = \left( {C \cap {C_1}} \right) \cup \left( {C \cap {C_2}} \right) \cup \left( {C \cap {C_3}} \right)\)

\( \Rightarrow P\left( C \right) = P\left( {C \cap {C_1}} \right) + P\left( {C \cap {C_2}} \right) + P\left( {C \cap {C_3}} \right)\)

\( = \frac{1}{3} \cdot \frac{4}{9} + \frac{1}{3} \cdot \frac{3}{5} + \frac{1}{3} \cdot \frac{5}{8} = \frac{{601}}{{1080}}\).

Đáp án A.

Đáp án : A