Có bao nhiêu đường thẳng đi qua A(4; 3), cắt trục tung tại điểm có tung độ là một số nguyên dương, cắt trục hoành tại điểm có hoành độ làm một số nguyên tố.
-
A.
Không có đường thẳng nào
-
B.
1 đường thẳng
-
C.
2 đường thẳng
-
D.
3 đường thẳng
Chứng minh dễ dàng được: Đường thẳng phải tìm cắt trục hoành tại điểm có hoành độ bằng a, cắt trục tung tại điểm có tung độ bằng b thì đường thẳng có dạng \(\frac{x}{a} + \frac{y}{b} = 1\)
Điểm A(4; 3) thuộc đường thẳng nên \(\frac{4}{a} + \frac{3}{b} = 1.\)
Do đó, \(b = \frac{{3a}}{{a - 4}} = 3 + \frac{{12}}{{a - 4}}\)
Do a là số nguyên tố nên \(a \ge 2,a - 4 \ge - 2\)
Lần lượt cho \(a - 4\) nhận các giá trị \( \pm 2; \pm 1;3;4;6;12\) với chú ý rằng a là số nguyên tố và \(b > 0\), ta tìm được \(\left\{ \begin{array}{l}a = 5\\b = 15\end{array} \right.\) và \(\left\{ \begin{array}{l}a = 7\\b = 7\end{array} \right.\)
Do đó ta tìm được hai đường thẳng \(\frac{x}{5} + \frac{y}{{15}} = 1\) (hay \(y = - 3x + 15\)) và \(\frac{x}{7} + \frac{y}{7} = 1\) (hay \(y = - x + 7\))
Đáp án : C