Có bao nhiêu giá trị của \(x\) thỏa mãn \(\frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{{x^2} + 6x}} - \frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{x - 4}} = 0\).
-
A.
0
-
B.
1
-
C.
2
-
D.
3
Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).
Muốn trừ hai phân thức có cùng mẫu thức, ta trừ các tử thức và giữ nguyên mẫu thức.
Điều kiện: \(\left\{ \begin{array}{l}{x^2} - 1 \ne 0\\x + 4 \ne 0\\{x^2} + 6x \ne 0\\x - 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 1} \right)\left( {x + 1} \right) \ne 0\\x + 4 \ne 0\\x\left( {x + 6} \right) \ne 0\\x - 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \pm 1\\x \ne \pm 4\\x \ne 0\\x \ne - 6\end{array} \right.\)
\(\begin{array}{l}\frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{{x^2} + 6x}} - \frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{x - 4}} = 0\\\frac{{x + 3}}{{{x^2} - 1}} \cdot \frac{{{x^2} + 6x}}{{x + 4}} - \frac{{x + 3}}{{{x^2} - 1}} \cdot \frac{{x - 4}}{{x + 4}} = 0\\\frac{{x + 3}}{{{x^2} - 1}}\left( {\frac{{{x^2} + 6x}}{{x + 4}} - \frac{{x - 4}}{{x + 4}}} \right) = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{\left( {{x^2} + 6x} \right) - \left( {x - 4} \right)}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{{x^2} + 6x - x + 4}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{{x^2} + 5x + 4}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{{x^2} + 4x + x + 4}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x\left( {x + 4} \right) + \left( {x + 4} \right)}}{{x + 4}} = 0\\\frac{{x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{\left( {x + 1} \right)\left( {x + 4} \right)}}{{\left( {x + 4} \right)}} = 0\\\frac{{x + 3}}{{x - 1}} = 0\\x + 3 = 0\\x = - 3\,\left( {{\rm{t/m}}} \right)\end{array}\)
Vậy có 1 giá trị của \(x\) thỏa mãn \(\frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{{x^2} + 6x}} - \frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{x - 4}} = 0\).
Đáp án : B