Có bao nhiêu giá trị của x thỏa mãn2x - 5^2; - 4x - 2^2; = — Không quảng cáo

Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x - 5} \right)^2}\ - 4{\left( {x - 2} \right)^2}\ = 0\)


Đề bài

Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?

  • A.
    \(2\).
  • B.
    \(1\).
  • C.
    \(0\).
  • D.
    \(4\).
Phương pháp giải
Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
Ta có:

\(\begin{array}{*{20}{l}}{{{\left( {2x-5} \right)}^2}\;-4{{\left( {x-2} \right)}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left[ {2\left( {x-2} \right)} \right]}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left( {2x-4} \right)}^2}\; = 0}\\{ \Leftrightarrow \left( {2x-5 + 2x-4} \right)\left( {2x-5-2x + 4} \right) = 0}\\{ \Leftrightarrow \left( {4x-9} \right).\left( { - 1} \right) = 0}\\{ \Leftrightarrow  - 4x + 9 = 0}\\{ \Leftrightarrow 4x = 9}\\{ \Leftrightarrow x = \;\frac{9}{4}}\end{array}\)

Đáp án : B