Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên?
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên thì \(\left( {{x^3} + 2{x^2} + 4x + 6} \right) \vdots \left( {x + 2} \right)\)
Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2\)
\(\begin{array}{l}\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}} = \frac{{{x^3} + 2{x^2} + 4x + 8 - 2}}{{x + 2}} = \frac{{{x^2}\left( {x + 2} \right) + 4\left( {x + 2} \right) - 2}}{{x + 2}}\\ = \frac{{\left( {{x^2} + 4} \right)\left( {x + 2} \right) - 2}}{{x + 2}} = {x^2} + 4 - \frac{2}{{x + 2}}\end{array}\)
Ta có \({x^2} \in \mathbb{Z}\,\,\,\forall x \in \mathbb{Z}\) nên để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên thì \(\frac{2}{{x + 2}} \in \mathbb{Z} \Rightarrow \left( {x + 2} \right) \in \) Ư\(\left( 2 \right) = \left\{ { - 2; - 1;1;2} \right\}\)
\(\begin{array}{l} + )\,x + 2 = - 2 \Leftrightarrow x = - 4\,\left( {TM} \right)\\ + )\,x + 2 = - 1 \Leftrightarrow x = - 3\,\left( {TM} \right)\\ + )\,x + 2 = 1 \Leftrightarrow x = - 1\,\left( {TM} \right)\\ + )\,x + 2 = 2 \Leftrightarrow x = 0\,\left( {TM} \right)\end{array}\)
Vậy có 4 giá trị nguyên của \(x\) để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên.
Đáp án : D