Có bao nhiêu số nguyên dương m thỏa mãn đa thức A = 4x^2y^3 — Không quảng cáo

Có bao nhiêu số nguyên dương m thỏa mãn đa thức \(A = 4{x^2}{y^3} + 3{x^3}{y^2}\) chia hết cho đơn thức \(B = 2{x^2}{y^m}\)


Đề bài

Có bao nhiêu số nguyên dương m thỏa mãn đa thức \(A = 4{x^2}{y^3} + 3{x^3}{y^2}\) chia hết cho đơn thức \(B = 2{x^2}{y^m}\)?

  • A.

    0.

  • B.

    1.

  • C.

    2.

  • D.

    3.

Phương pháp giải

Để đa thức chia hết cho đơn thức thì mọi hạng tử của đa thức phải chia hết cho đơn thức.

Để \(A = 4{x^2}{y^3} + 3{x^3}{y^2}\) chia hết cho \(B = 2{x^2}{y^m}\) thì \(4{x^2}{y^3} \vdots 2{x^2}{y^m}\) và \(3{x^3}{y^2} \vdots 2{x^2}{y^m}\).

Do đó \(3 \ge m\) và \(2 \ge m\). Kết hợp với điều kiện m là số nguyên dương thì \(0 < m \le 2\), hay m = 1; m = 2.

Vậy có 2 giá trị nguyên dương của m.

Đáp án C.

Đáp án : C