Dân số của một quốc gia sau t năm kể từ năm 2023 được ước tính bởi công thức \(N(t) = 100{e^{0,012t}}\) (N(t) được tính bằng triệu người), \(0 \le t \le 50\)). Đạo hàm của hàm số N(t) biểu thị tốc độ tăng trưởng dân số của quốc gia đó (tính bằng triệu người/năm). Vào năm nào tốc độ tăng trưởng dân số của quốc gia đó là 1,5 triệu người/năm?
Đáp án:
Đáp án:
Tìm N’(t) và giải phương trình N’(t) = 1,5.
Ta có: \(N'(t) = 100.0,021{e^{0,012t}} = 1,2{e^{0,012t}}\).
Tốc độ tăng trưởng dân số đạt 1,5 triệu người/năm tức là \(N'(t) = 1,5 \Leftrightarrow 1,2{e^{0,012t}} = 1,5 \Leftrightarrow t \approx 18,6\).
Vậy, vào năm 2023 + 18 = 2041, tốc độ tăng trưởng dân số của quốc gia đó là 1,5 triệu người/năm.