Dạng 4. Tính bằng cách hợp lí Chủ đề 6 Ôn hè Toán 6 — Không quảng cáo

Bài tập ôn hè môn Toán 6 lên 7, bộ đề ôn tập hè có lời giải chi tiết Ôn tập hè Chủ đề 6. Phân số. Các bài toán về phân số


Dạng 4. Tính bằng cách hợp lí Chủ đề 6 Ôn hè Toán 6

Tải về

Sử dụng các tính chất của phép cộng, phép nhân phân số: +) Phép cộng:

Lý thuyết

Sử dụng các tính chất của phép cộng, phép nhân phân số:

+) Phép cộng:

+ Tính chất giao hoán: \(\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{c}{d} + \dfrac{a}{b}\)

+ Tính chất kết hợp:

\(\left( {\dfrac{a}{b} + \dfrac{c}{d}} \right) + \dfrac{p}{q} = \dfrac{a}{b} + \left( {\dfrac{c}{d} + \dfrac{p}{q}} \right)\)

+ Cộng với số \(0\) : \(\dfrac{a}{b} + 0 = 0 + \dfrac{a}{b} = \dfrac{a}{b}\)

+) Phép nhân:

+ Tính chất giao hoán: \(\dfrac{a}{b}.\dfrac{c}{d} = \dfrac{c}{d}.\dfrac{a}{b}\)

+ Tính chất kết hợp: \(\left( {\dfrac{a}{b}.\dfrac{c}{d}} \right).\dfrac{p}{q} = \dfrac{a}{b}.\left( {\dfrac{c}{d}.\dfrac{p}{q}} \right)\)

+ Nhân với số \(1\): \(\dfrac{a}{b}.1 = 1.\dfrac{a}{b} = \dfrac{a}{b}\), nhân với số \(0\): \(\dfrac{a}{b}.0 = 0\)

+ Tính chất phân phối của phép nhân đối với phép cộng:

\(\dfrac{a}{b}.\left( {\dfrac{c}{d} + \dfrac{p}{q}} \right) = \dfrac{a}{b}.\dfrac{c}{d} + \dfrac{a}{b}.\dfrac{p}{q}\)

Chú ý: Thứ tự thực hiện phép tính như đối với số nguyên

Bài tập

Bài 1:

Tính nhanh:

a) \(\dfrac{{ - 2}}{7}.\dfrac{{125}}{9}:\dfrac{3}{{14}}:{( - 5)^2}\)

b) \(\dfrac{{35}}{{17}} + \dfrac{2}{{13}} - \left( {\dfrac{{ - 11}}{{13}} + 1\dfrac{1}{{17}}} \right)\)

c) \(\dfrac{{13}}{{23}}.\dfrac{{37}}{{32}} - \dfrac{{37}}{{32}}.\dfrac{{11}}{{23}} + \dfrac{2}{{23}}\)

Bài 2:

Tính bằng cách hợp lí:

a) \(A = \left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right):\left( {\dfrac{{ - 4}}{{13}} + 1\dfrac{1}{5}} \right)\)

b) \(B = \dfrac{{\dfrac{2}{{11}} + \dfrac{2}{{13}} - \dfrac{2}{{15}} - \dfrac{2}{{17}}}}{{\dfrac{7}{{11}} + \dfrac{7}{{13}} - \dfrac{7}{{15}} - \dfrac{7}{{17}}}}\)

Hướng dẫn giải chi tiết

Bài 1:

Tính nhanh:

a) \(\dfrac{{ - 2}}{7}.\dfrac{{125}}{9}:\dfrac{3}{{14}}:{( - 5)^2}\)

b) \(\dfrac{{35}}{{17}} + \dfrac{2}{{13}} - \left( {\dfrac{{ - 11}}{{13}} + 1\dfrac{1}{{17}}} \right)\)

c) \(\dfrac{{13}}{{23}}.\dfrac{{37}}{{32}} - \dfrac{{37}}{{32}}.\dfrac{{11}}{{23}} + \dfrac{2}{{23}}\)

Phương pháp

Áp dụng tính chất giao hoán và phân phối của phép nhân đối với phép cộng

Lời giải

a)

\(\begin{array}{l}\dfrac{{ - 2}}{7}.\dfrac{{125}}{9}:\dfrac{3}{{14}}:{( - 5)^2}\\ = \dfrac{{ - 2}}{7}.\dfrac{{125}}{9}.\dfrac{{14}}{3}:25\\ = \dfrac{{ - 2}}{7}.\dfrac{{125}}{9}.\dfrac{{14}}{3}.\dfrac{1}{{25}}\\ = \left( {\dfrac{{ - 2}}{7}.\dfrac{{14}}{3}} \right).\left( {\dfrac{{125}}{9}.\dfrac{1}{{25}}} \right)\\ = \dfrac{{ - 4}}{3}.\dfrac{5}{9}\\ = \dfrac{{ - 20}}{{27}}\end{array}\)

b)

\(\begin{array}{l}\dfrac{{35}}{{17}} + \dfrac{2}{{13}} - \left( {\dfrac{{ - 11}}{{13}} + 1\dfrac{1}{{17}}} \right)\\ = \dfrac{{35}}{{17}} + \dfrac{2}{{13}} + \dfrac{{11}}{{13}} - 1\dfrac{1}{{17}}\\ = \left( {\dfrac{{35}}{{17}} - 1\dfrac{1}{{17}}} \right) + \left( {\dfrac{2}{{13}} + \dfrac{{11}}{{13}}} \right)\\ = \left( {\dfrac{{35}}{{17}} - \dfrac{{18}}{{17}}} \right) + \dfrac{{13}}{{13}}\\ = \dfrac{{17}}{{17}} + \dfrac{{13}}{{13}}\\ = 1 + 1\\ = 2\end{array}\)

c)

\(\begin{array}{l}\dfrac{{13}}{{23}}.\dfrac{{37}}{{32}} - \dfrac{{37}}{{32}}.\dfrac{{11}}{{23}} + \dfrac{2}{{23}}\\ = \dfrac{{37}}{{32}}.\left( {\dfrac{{13}}{{23}} - \dfrac{{11}}{{23}}} \right) + \dfrac{2}{{23}}\\ = \dfrac{{37}}{{32}}.\dfrac{2}{{23}} + \dfrac{2}{{23}}\\ = \dfrac{2}{{23}}.\left( {\dfrac{{37}}{{32}} + 1} \right)\\ = \dfrac{2}{{23}}.\dfrac{{69}}{{32}}\\ = \dfrac{3}{{16}}\end{array}\)

Bài 2:

Tính bằng cách hợp lí:

a) \(A = \left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right):\left( {\dfrac{{ - 4}}{{13}} + 1\dfrac{1}{5}} \right)\)

b) \(B = \dfrac{{\dfrac{2}{{11}} + \dfrac{2}{{13}} - \dfrac{2}{{15}} - \dfrac{2}{{17}}}}{{\dfrac{7}{{11}} + \dfrac{7}{{13}} - \dfrac{7}{{15}} - \dfrac{7}{{17}}}}\)

Phương pháp

Tìm mối liên hệ giữa các phép tính trong biểu thức

Lời giải

a)

\(\begin{array}{l}A = \left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right):\left( {\dfrac{{ - 4}}{{13}} + 1\dfrac{1}{5}} \right)\\ = \left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right):\left[ {2.\left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right)} \right]\\ = \dfrac{1}{2}\end{array}\)

b)

\(\begin{array}{l}B = \dfrac{{\dfrac{2}{{11}} + \dfrac{2}{{13}} - \dfrac{2}{{15}} - \dfrac{2}{{17}}}}{{\dfrac{7}{{11}} + \dfrac{7}{{13}} - \dfrac{7}{{15}} - \dfrac{7}{{17}}}}\\ = \dfrac{{2.\left( {\dfrac{1}{{11}} + \dfrac{1}{{13}} - \dfrac{1}{{15}} - \dfrac{1}{{17}}} \right)}}{{7.\left( {\dfrac{1}{{11}} + \dfrac{1}{{13}} - \dfrac{1}{{15}} - \dfrac{1}{{17}}} \right)}}\\ = \dfrac{2}{7}\end{array}\)


Cùng chủ đề:

Dạng 3. Tìm x Chủ đề 7 Ôn hè Toán 6
Dạng 3. Vẽ hình có trục đối xứng, tâm đối xứng Chủ đề 9 Ôn hè Toán 6
Dạng 4. Các bài toán thực tế Chủ đề 5 Ôn hè Toán 6
Dạng 4. Một số bài toán thực tiễn Chủ đề 7 Ôn hè Toán 6
Dạng 4. Phân tích một số ra thừa số nguyên tố Chủ đề 3 Ôn hè Toán 6
Dạng 4. Tính bằng cách hợp lí Chủ đề 6 Ôn hè Toán 6
Dạng 4. Xác suất thực nghiệm Chủ đề 11 Ôn hè Toán 6
Dạng 5. Tìm x Chủ đề 6 Ôn hè Toán 6
Dạng 6. Dãy phân số viết theo quy luật Chủ đề 6 Ôn hè Toán 6
Dạng 7. Hai bài toán về phân số Chủ đề 6 Ôn hè Toán 6