Điền số thích hợp vào chỗ trống:
Kiểm tra thị lực của một học sinh trường THCS, ta thu được bảng kết quả như sau:
|
Khối |
Số học sinh được kiểm tra |
Số học sinh bị tật khúc xạ (cận thị, viễn thị, loạn thị) |
|
6 |
210 |
14 |
|
7 |
200 |
30 |
|
8 |
180 |
40 |
|
9 |
170 |
51 |
Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” khối 6 là
, khối 7 là
, khối 8 là
, khối 9 là
Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” lớn nhất là khối
Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” khối 6 là
, khối 7 là
, khối 8 là
, khối 9 là
Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” lớn nhất là khối
- Tính xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” từng khối.
Xác suất thực nghiệm=Số học sinh bị khúc xạ: Số học sinh được kiểm tra.
- So sánh các phân số với nhau.
Số học sinh bị khúc xạ khối 6 là 14. Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” khối 6 là \(\dfrac{{14}}{{210}} = \dfrac{1}{{15}}\)
Số học sinh bị khúc xạ khối 7 là 30. Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” khối 7 là \(\dfrac{{30}}{{200}} = \dfrac{3}{{20}}\)
Số học sinh bị khúc xạ khối 8 là 40. Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” khối 8 là \(\dfrac{{40}}{{180}} = \dfrac{2}{9}\)
Số học sinh bị khúc xạ khối 9 là 51. Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” khối 9 là \(\dfrac{{51}}{{170}} = \dfrac{3}{{10}}\)
Số lớn nhất trong các số \(\dfrac{1}{{15}};\dfrac{3}{{20}};\dfrac{2}{9};\dfrac{3}{{10}}\) là \(\dfrac{3}{{10}}\).
Vậy khối có xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” lớn nhất là khối 9