Đề bài
Đồ thị \(y = \frac{{{x^2} - 3x + 2}}{{x - 1}}\) có tất cả bao nhiêu đường tiệm cận đứng?
-
A.
3
-
B.
1
-
C.
0
-
D.
2
Phương pháp giải
Tìm đường tiệm cận đứng thông qua giới hạn của hàm số.
Ta có: \(y = \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}} = \frac{{(x - 1)(x - 2)}}{{(x - 1)(x + 1)}} = \frac{{x - 2}}{{x + 1}}.\)
\( \Rightarrow \mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{x - 2}}{{x + 1}} = - \infty .\)
Vậy x = -1 là tiệm cận đứng của đồ thị hàm số.
Đáp án : B