Đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 3x}}{{x - 2}}\) là:
-
A.
\(y = x - 5\)
-
B.
\(y = 5x\)
-
C.
\(y = x + 5\)
-
D.
\(y = - x - 5\)
Thực hiện phép chia đa thức (ở tử) cho đa thức (ở mẫu) ta được \(y = ax + b + \frac{M}{{cx + d}}\)(a≠0) với M là hằng số.
Đường thẳng y = ax + b (a≠0) gọi là đường tiệm cận xiên của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - (ax + b)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f(x) - (ax + b)} \right] = 0\).
Kết luận đường thẳng y = ax +b là đường tiệm cận xiên của đồ thị hàm số.
Ta có: \(y = y = \frac{{{x^2} + 3x}}{{x - 2}} = x + 5 + \frac{{10}}{{x - 2}} = f(x)\).
Từ đó: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - \left( {x + 5} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{10}}{{x - 2}} = 0\).
Vậy đường thẳng \(y = x + 5\) là đường tiệm cận xiên của đồ thị hàm số đã cho.
Đáp án : C