Đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} - 4x + 2}}{{ - 2x + 3}}\) là:
-
A.
\(y = - \frac{1}{2}x - \frac{5}{4}\)
-
B.
\(y = \frac{1}{2}x + \frac{5}{4}\)
-
C.
\(y = \frac{1}{2}x - \frac{5}{4}\)
-
D.
\(y = - \frac{1}{2}x + \frac{5}{4}\)
Thực hiện phép chia đa thức (ở tử) cho đa thức (ở mẫu) ta được \(y = ax + b + \frac{M}{{cx + d}}\)(a≠0) với M là hằng số.
Đường thẳng y = ax + b (a≠0) gọi là đường tiệm cận xiên của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - (ax + b)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f(x) - (ax + b)} \right] = 0\).
Kết luận đường thẳng y = ax +b là đường tiệm cận xiên của đồ thị hàm số.
Ta có: \(y = \frac{{{x^2} - 4x + 2}}{{ - 2x + 3}} = - \frac{1}{2}x + \frac{5}{4} - \frac{{15}}{{4( - 2x + 3)}} = f(x)\).
Từ đó: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - \left( { - \frac{1}{2}x + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } - \frac{{15}}{{4( - 2x + 3)}} = 0\).
Vậy đường thẳng \(y = - \frac{1}{2}x + \frac{5}{4}\) là đường tiệm cận xiên của đồ thị hàm số đã cho.
Đáp án : D