Em hãy chọn đáp án sai trong các đáp án sau:
-
A.
\(MA > MH\)
-
B.
\(HB < HC\)
-
C.
\(MA = MB\)
-
D.
\(MC < MA.\)
Áp dụng định lý: Quan hệ giữa đường vuông góc và đường xiên.
Xét hai tam giác bằng nhau, suy ra cặp cạnh tương ứng bằng nhau.
Vì $MH$ là đường vuông góc và $MA$ là đường xiên nên \(MA > MH\) (quan hệ đường vuông góc và đường xiên). Đáp án A đúng nên loại A.
Vì \(\widehat {MBC}\) là góc ngoài của \(\Delta MHB \Rightarrow \widehat {MBC} > \widehat {MHB} = {90^0}\)
Xét \(\Delta MBC\) có: \(\widehat {MBC}\) là góc tù nên suy ra \(MC > MB\) (quan hệ giữa góc và cạnh trong tam giác)
Mà $HB$ và $HC$ lần lượt là hình chiếu của $MB$ và $MC$ trên $AC.$
\( \Rightarrow HB < HC\) (quan hệ giữa đường xiên và hình chiếu). Đáp án B đúng nên loại đáp án B.
Xét \(\Delta{MAH}\)và \(\Delta{MBH}\), ta có:
\(MH\) chung
\(\widehat{MHA}=\widehat{MHB}\)
\(HA = HB\)
\(\Rightarrow \Delta{MAH}=\Delta{MBH}(c.g.c)\)
\( \Rightarrow MA = MB\) (2 cạnh tương ứng). Đáp án C đúng nên loại đáp án C.
Ta có: \(\left\{ \begin{array}{l}MB = MA\left( {cmt} \right)\\MC > MB\left( {cmt} \right)\end{array} \right. \Rightarrow MC > MA\). Đáp án D sai nên chọn đáp án D.
Đáp án : D