Em hãy sắp xếp các phân số sau theo thứ tự giảm dần: \(\dfrac{1}{4};\dfrac{2}{3};\dfrac{1}{2};\dfrac{4}{3};\dfrac{5}{2}\)
-
A.
\(\dfrac{4}{3} > \dfrac{5}{2} > \dfrac{2}{3} > \dfrac{1}{2} > \dfrac{1}{4}\)
-
B.
\(\dfrac{5}{2} > \dfrac{4}{3} > \dfrac{2}{3} > \dfrac{1}{2} > \dfrac{1}{4}\)
-
C.
\(\dfrac{5}{2} > \dfrac{4}{3} > \dfrac{2}{3} > \dfrac{1}{4} > \dfrac{1}{2}\)
-
D.
\(\dfrac{4}{3} > \dfrac{5}{2} > \dfrac{2}{3} > \dfrac{1}{4} > \dfrac{1}{2}\)
So sánh các phân số với \(1;\,\,2\)
Quy đồng mẫu số để so sánh các phân số nhỏ hơn \(1\).
Ta có: các phân số có tử số nhỏ hơn mẫu số là các phân số nhỏ hơn \(1\) là: \(\dfrac{1}{4};\dfrac{2}{3};\dfrac{1}{2}\)
Quy đồng chung mẫu số các phân số này, ta được: \(\dfrac{1}{4} = \dfrac{3}{{12}}\);\(\dfrac{2}{3} = \dfrac{8}{{12}}\); \(\dfrac{1}{2} = \dfrac{6}{{12}}\)
Nhận thấy: \(\dfrac{3}{{12}} < \dfrac{6}{{12}} < \dfrac{8}{{12}}\) suy ra \(\dfrac{1}{4} < \dfrac{1}{2} < \dfrac{2}{3}\)
Các phân số lớn hơn , nhỏ hơn là
Phân số lớn hơn \(1\) nhỏ hơn \(2\) là: \(\dfrac{4}{3}\)
Phân số lớn hơn \(2\) là: \(\dfrac{5}{2}\)
Như vậy, sắp xếp các phân số theo thứ tự giảm dần là:
\(\dfrac{5}{2} > \dfrac{4}{3} > \dfrac{2}{3} > \dfrac{1}{2} > \dfrac{1}{4}\).
Đáp án : B