Ghép mỗi ý ở cột A với mỗi ý ở cột B để được kết quả đúng.
a. \(\left( {x - y} \right)\left( {x + y} \right)\)
b. \(10x - 25 - {x^2}\)
c. \(8{x^3} - \frac{1}{8}\)
1. \( - {\left( {x - 5} \right)^2}\)
2. \({x^2} - {y^2}\)
3. \(\left( {2x - \frac{1}{2}} \right)\left( {4{x^2} + x + \frac{1}{4}} \right)\)
a. \(\left( {x - y} \right)\left( {x + y} \right)\)
2. \({x^2} - {y^2}\)
b. \(10x - 25 - {x^2}\)
1. \( - {\left( {x - 5} \right)^2}\)
c. \(8{x^3} - \frac{1}{8}\)
3. \(\left( {2x - \frac{1}{2}} \right)\left( {4{x^2} + x + \frac{1}{4}} \right)\)
Sử dụng kiến thức về các hằng đẳng thức đáng nhớ.
a. \(\left( {x - y} \right)\left( {x + y} \right) = {x^2} - {y^2} \Rightarrow \) a – 2.
b. \(10x - 25 - {x^2} = - {x^2} + 10x - 25 = - \left( {{x^2} - 10x + 25} \right) = - {\left( {x - 5} \right)^2} \Rightarrow \) b – 1.
c. \(8{x^3} - \frac{1}{8} = \left( {2x - \frac{1}{2}} \right)\left( {4{x^2} + x + \frac{1}{4}} \right) \Rightarrow \) c – 3.
Đáp án: a – 2; b – 1; c – 3 .