Giả sử không gian ngoài vũ trụ được xét theo hệ tọa độ Oxyz, một phi thuyền ở ngoài không gian đang ở vị trí gốc tọa độ. Có 3 vệ tinh nhân tạo lần lượt ở 3 vị trí A(2500; 4700; -3600), B(3700; 1100; 2900), C(-5000; -4000; -7100), phi thuyền cần đến vị trí trọng tâm của 3 vệ tinh A, B, C để nhận và truyền tín hiệu đến các vệ tinh. Quãng đường mà phi thuyền cần di chuyển để đến được trọng tâm của 3 vệ tinh là bao nhiêu (làm tròn đến hàng đơn vị)?
Đáp án:
Đáp án:
Gọi điểm G là trọng tâm của tam giác ABC. Tính khoảng cách OG.
Gọi điểm G là trọng tâm của tam giác ABC.
Khi đó:
G(2500+3700−50003;4700+1100−40003;−3600+2900−71003)=(400;600;−2600).
Phi thuyền đang ở vị trí gốc tọa độ, cần di chuyển đến vị trí trọng tâm G của 3 vệ tinh A, B, C nên quãng đường cần di chuyển bằng độ dài vecto →OG=(400;600;−2600).
Độ dài vecto →OG là √4002+6002+(−2600)2≈2698.