Giá trị biểu thức x^4 - 2022x^3 + 2022x^2 - 2022x + 2022 — Không quảng cáo

Giá trị biểu thức \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\) tại \(x = 2021\)là


Đề bài

Giá trị biểu thức \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\) tại \(x = 2021\)là

  • A.
    \(2022\).
  • B.
    \(2021\).
  • C.
    \(1\).
  • D.
    \( - 1\).
Phương pháp giải
x = 2021 nên 2022 = x + 1

Ta biến đổi biểu thức đã cho có x + 1 rồi thay các giá trị.

x = 2021 nên 2022 = x + 1

Ta có \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\)

\( = {x^4} - \left( {x + 1} \right){x^3} + \left( {x + 1} \right){x^2} - \left( {x + 1} \right)x + \left( {x + 1} \right)\)

\( = {x^4} - {x^4} - {x^3} + {x^3} + {x^2} - {x^2} - x + x + 1 = 1\)

Giá trị biểu thức \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\) tại \(x = 2021\) là \(1\).

Đáp án : C