Đề bài
Giá trị biểu thức \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\) tại \(x = 2021\)là
-
A.
\(2022\).
-
B.
\(2021\).
-
C.
\(1\).
-
D.
\( - 1\).
Phương pháp giải
x = 2021
nên 2022 = x + 1
Ta biến đổi biểu thức đã cho có x + 1 rồi thay các giá trị.
x = 2021 nên 2022 = x + 1
Ta có \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\)
\( = {x^4} - \left( {x + 1} \right){x^3} + \left( {x + 1} \right){x^2} - \left( {x + 1} \right)x + \left( {x + 1} \right)\)
\( = {x^4} - {x^4} - {x^3} + {x^3} + {x^2} - {x^2} - x + x + 1 = 1\)
Giá trị biểu thức \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\) tại \(x = 2021\) là \(1\).
Đáp án : C