Giá trị của a, b, c biết ax^2 + bx + cx + 3 = x^3 + 2x^2 — Không quảng cáo

Giá trị của \(a\), \(b\), \(c\) biết \(\left( {a{x^2} + bx + c} \right)\left( {x + 3} \right) = {x^3} + 2{x^2} - 3x\) là


Đề bài

Giá trị của \(a\), \(b\), \(c\) biết \(\left( {a{x^2} + bx + c} \right)\left( {x + 3} \right) = {x^3} + 2{x^2} - 3x\) là

  • A.

    \(a = 1\), \(b = 1\), \(c = 0\).

  • B.

    \(a = 2\), \(b = 1\), \(c = 1\).

  • C.

    \(a = 1\), \(b =  - 1\), \(c = 0\).

  • D.

    \(a =  - 1\), \(b = 2\), \(c = 1\).

Phương pháp giải

Áp dụng quy tắc nhân đa thức với đa thức và áp dụng hai đa thức bằng nhau khi các giá trị tương ứng có hệ số bằng nhau. Từ đó tìm ra a, b.

\(\left( {a{x^2} + bx + c} \right)\left( {x + 3} \right) = {x^3} + 2{x^2} - 3x\)

\(a{x^3} + 3a{x^2} + b{x^2} + 3bx + cx + 3c = {x^3} + 2{x^2} - 3x\)

\(a{x^3} + \left( {3a + b} \right){x^2} + \left( {3b + c} \right)x + 3c = {x^3} + 2{x^2} - 3x\)

Suy ra \(a = 1\); \(3a + b = 2\); \(3b + c =  - 3\); \(3c = 0\).

Suy ra \(a = 1\), \(b =  - 1\), \(c = 0\).

Đáp án : C