Đề bài
Giá trị lớn nhất của hàm số \(y = \frac{{{x^2} + 2x + 3}}{{x - 1}}\) là:
-
A.
8
-
B.
9
-
C.
1
-
D.
3
Phương pháp giải
Tìm đạo hàm của hàm số sau đó tính các giá trị f(x).
Hàm số xác định trên (1;3].
\(f'(x) = \frac{{{x^2} - 2x - 5}}{{{{(x + 1)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 + \sqrt 6 \notin (1;3]}\\{x = 1 - \sqrt 6 \notin (1;3]}\end{array}} \right.\)
Vì \(x \in \left[ {0;\frac{{3\pi }}{2}} \right]\) nên \(f'(x) = 0 \Leftrightarrow x = 0,x = \frac{\pi }{3}\).
Vậy giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} + 2x + 3}}{{x - 1}}\) bằng 9.
Đáp án : B