Giá trị nhỏ nhất của biểu thức \(T = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 6} \right) + 3\) là
-
A.
\(4\) .
-
B.
\(3\) .
-
C.
\(2\) .
-
D.
\(5\) .
Dấu = xảy ra khi \({\left( {A + B} \right)^2} = 0;{\left( {C + D} \right)^2} = 0 \Leftrightarrow A = - B;C = - D\) .
Giá trị nhỏ nhất của biểu thức là \(m\) .
Ta có
\(\begin{array}{l}T = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 6} \right) + 3\\ = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 5 + 1} \right) + 3\\ = {\left( {{x^2} + 4x + 5} \right)^2} + \left( {{x^2} + 4x + 5} \right) + 3\\ = {\left( {{x^2} + 4x + 5} \right)^2} + \left( {{x^2} + 4x + 4} \right) + 4\\ = {\left( {{x^2} + 4x + 5} \right)^2} + {\left( {x + 2} \right)^2} + 4\end{array}\)
Ta thấy \({\left( {x + 2} \right)^2} \ge 0\forall x \Rightarrow \left( {{x^2} + 4x + 5} \right) = \left( {{x^2} + 4x + 4 + 1} \right) = {\left( {x + 2} \right)^2} + 1 \ge 1\)
\(\begin{array}{l} \Rightarrow {\left( {{x^2} + 4x + 5} \right)^2} + {\left( {x + 2} \right)^2} + 4 \ge 1 + 4\\ \Rightarrow T \ge 5\end{array}\)
Dấu = xảy ra khi \(\left\{ \begin{array}{l}{x^2} + 4x + 5 = 1\\x + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {x + 2} \right)^2} = 0\\x = - 2\end{array} \right. \Leftrightarrow x = - 2\)
Vậy giá trị nhỏ nhất của T là \(5\) khi \(x = - 2\)
Đáp án : D