Giá trị nhỏ nhất của hàm số \(y = 2\sin x + \sin 2x\) trên đoạn \(\left[ {0;\frac{{3\pi }}{2}} \right]\) là:
-
A.
-2
-
B.
2
-
C.
0
-
D.
\(\frac{{3\sqrt 3 }}{2}\)
Tìm đạo hàm của hàm số sau đó tính các giá trị f(x).
\(f'(x) = 2\cos x + 2\cos 2x = 4\cos \frac{x}{2}\cos \frac{{3x}}{2}\).
Vì \(x \in \left[ {0;\frac{{3\pi }}{2}} \right]\) nên \(f'(x) = 0 \Leftrightarrow x = 0,x = \frac{\pi }{3}\).
Ta có: \(f\left( 0 \right) = 0\); \(f\left( {\frac{\pi }{3}} \right) = \frac{{3\sqrt 3 }}{2}\); \(f\left( {\frac{{5\pi }}{6}} \right) = \frac{{2 - \sqrt 3 }}{2}\).
Vậy giá trị nhỏ nhất của hàm số \(y = 2\sin x + \sin 2x\) trên đoạn \(\left[ {\frac{\pi }{3};\frac{{5\pi }}{6}} \right]\) bằng 0.
Đáp án : C