Giá trị nhỏ nhất của hàm số y = 2sin x + sin 2x trên đoạn [ — Không quảng cáo

Giá trị nhỏ nhất của hàm số \(y = 2\sin x + \sin 2x\) trên đoạn \(\left[ {0 \frac{{3\pi }}{2}} \right]\) là


Đề bài

Giá trị nhỏ nhất của hàm số \(y = 2\sin x + \sin 2x\) trên đoạn \(\left[ {0;\frac{{3\pi }}{2}} \right]\) là:

  • A.

    -2

  • B.

    2

  • C.

    0

  • D.

    \(\frac{{3\sqrt 3 }}{2}\)

Phương pháp giải

Tìm đạo hàm của hàm số sau đó tính các giá trị f(x).

\(f'(x) = 2\cos x + 2\cos 2x = 4\cos \frac{x}{2}\cos \frac{{3x}}{2}\).

Vì \(x \in \left[ {0;\frac{{3\pi }}{2}} \right]\) nên \(f'(x) = 0 \Leftrightarrow x = 0,x = \frac{\pi }{3}\).

Ta có: \(f\left( 0 \right) = 0\); \(f\left( {\frac{\pi }{3}} \right) = \frac{{3\sqrt 3 }}{2}\); \(f\left( {\frac{{5\pi }}{6}} \right) = \frac{{2 - \sqrt 3 }}{2}\).

Vậy giá trị nhỏ nhất của hàm số \(y = 2\sin x + \sin 2x\) trên đoạn \(\left[ {\frac{\pi }{3};\frac{{5\pi }}{6}} \right]\) bằng 0.

Đáp án : C