Giải bài 2 trang 28 SGK Toán 8 tập 1 - Cánh diều
Thực hiện phép tính:
Đề bài
Thực hiện phép tính:
\(a) - \dfrac{1}{3}{a^2}b\left( { - 6{\rm{a}}{b^2} - 3{\rm{a}} + 9{b^3}} \right)\)
\(b)\left( {{a^2} + {b^2}} \right)\left( {{a^4} - {a^2}{b^2} + {b^4}} \right)\)
\(c)\left( { - 5{{\rm{x}}^3}{y^3}z} \right):\left( {\dfrac{{15}}{2}x{y^2}z} \right)\)
\(d)\left( {8{{\rm{x}}^4}{y^2} - 10{{\rm{x}}^2}{y^4} + 12{{\rm{x}}^3}{y^5}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)\)
Phương pháp giải - Xem chi tiết
Áp dụng các quy tắc nhân đơn thức với đa thức, nhân đa thức với đa thức, chia đơn thức cho đơn thức, chia đa thức cho đơn thức đối với đa thức nhiều biên để thực hiện phép tính.
Lời giải chi tiết
\(\begin{array}{l}a) - \dfrac{1}{3}{a^2}b\left( { - 6{\rm{a}}{b^2} - 3{\rm{a}} + 9{b^3}} \right)\\ = \left( { - \dfrac{1}{3}{a^2}b} \right).\left( { - 6{\rm{a}}{b^2}} \right) + \left( { - \dfrac{1}{3}{a^2}b} \right).\left( { - 3{\rm{a}}} \right) + \left( { - \dfrac{1}{3}{a^2}b} \right).\left( {9{b^3}} \right)\\ = 2{{\rm{a}}^3}{b^3} + {a^3}b - 3{\rm{a^2}}{b^4}\end{array}\)
\(b)\left( {{a^2} + {b^2}} \right)\left( {{a^4} - {a^2}{b^2} + {b^4}} \right) = {\left( {{a^2}} \right)^3} + {\left( {{b^2}} \right)^3} = {a^6} + {b^6}\)
\(\begin{array}{l}c)\left( { - 5{{\rm{x}}^3}{y^2}z} \right):\left( {\dfrac{{15}}{2}x{y^2}z} \right)\\ = \left( { - 5:\dfrac{{15}}{2}} \right).\left( {{x^3}:x} \right).\left( {{y^2}:{y^2}} \right).\left( {z:z} \right) = \dfrac{{ - 2}}{3}{x^2}\end{array}\)
\(\begin{array}{l}d)\left( {8{{\rm{x}}^4}{y^2} - 10{{\rm{x}}^2}{y^4} + 12{{\rm{x}}^3}{y^5}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)\\ = \left[ {\left( {8{{\rm{x}}^4}{y^2}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)} \right] + \left[ {\left( { - 10{x^2}{y^4}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)} \right] + \left[ {\left( {12{{\rm{x}}^3}{y^5}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)} \right]\\ = - 4{{\rm{x}}^2} + 5{y^2} - 6{\rm{x}}{y^3}\end{array}\)