Giải bài 3 trang 48 vở thực hành Toán 8 — Không quảng cáo

Giải vth Toán 8, soạn vở thực hành Toán 8 KNTT Bài 11. Hình thang cân trang 47, 48 Vở thực hành Toán 8


Giải bài 3 trang 48 vở thực hành Toán 8

Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C

Đề bài

Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BD tại D, hai đường thẳng này cắt nhau tại E. Chứng minh rằng nếu EC = ED thì hình thang ABCD là hình thang cân.

Phương pháp giải - Xem chi tiết

Chứng minh AC = AF + CF = BF + DF = BD suy ra ABCD là hình thang cân vì có hai đường chéo bằng nhau.

Lời giải chi tiết

Ta có EC = ED nên tam giác ECD cân tại E, suy ra \(\widehat {{D_2}} = \widehat {{C_2}}\) (1)

Do AC CE, BD DE nên \(\widehat {{D_2}} = \widehat {{D_2}} = \widehat {BDE} = {90^0}\) ,

\(\widehat {{C_1}} + \widehat {{C_2}} = \widehat {ACE} = {90^0}\) (2)

Gọi F là giao điểm của AC và BD.

Từ (1) và (2) suy ra \(\widehat {{D_1}} = \widehat {{C_1}} \Rightarrow \Delta DCF\) cân tại F.

\( \Rightarrow DF = FC\) (3)

Do AB // CD nên \(\widehat {{D_1}} = \widehat {{B_1}},\widehat {{C_1}} = \widehat {{A_1}}\) (hai góc so le trong).

\( \Rightarrow \widehat {{A_1}} = \widehat {{B_1}} \Rightarrow \Delta ABF\) cân tại F.

\( \Rightarrow {\rm{AF}} = BF\) (4)

Từ (3) và (4) suy ra AC = AF + CF = BF + DF = BD.

Suy ra hình thang ABCD có hai đường chéo bằng nhau nên nó là hình thang cân.


Cùng chủ đề:

Giải bài 3 trang 38 vở thực hành Toán 8
Giải bài 3 trang 39 vở thực hành Toán 8 tập 2
Giải bài 3 trang 43 vở thực hành Toán 8 tập 2
Giải bài 3 trang 45 vở thực hành Toán 8
Giải bài 3 trang 47 vở thực hành Toán 8 tập 2
Giải bài 3 trang 48 vở thực hành Toán 8
Giải bài 3 trang 50 vở thực hành Toán 8
Giải bài 3 trang 52 vở thực hành Toán 8 tập 2
Giải bài 3 trang 53 vở thực hành Toán 8
Giải bài 3 trang 55 vở thực hành Toán 8
Giải bài 3 trang 55 vở thực hành Toán 8 tập 2