Giải bài 5 trang 12 sách bài tập Toán 6 - Chân trời sáng tạo Tập 2
Tải vềNêu hai cách giải thích các phân số sau bằng nhau (dùng khái niệm bằng nhau và dùng tính chất)
Đề bài
Nêu hai cách giải thích các phân số sau bằng nhau (dùng khái niệm bằng nhau và dùng tính chất)
a) \(\frac{{ - 15}}{{33}}\)và \(\frac{5}{{ - 11}};\)
b) \(\frac{7}{{ - 12}}\) và \(\frac{{35}}{{ - 60}};\)
c) \(\frac{{ - 8}}{{14}}\) và \(\frac{{12}}{{ - 21}}\)
Phương pháp giải - Xem chi tiết
Cách 1: Dùng định nghĩa bằng nhau:
Nếu \(a.d = b.c\) thì \(\frac{a}{b} = \frac{c}{d}\) ( với \(a,b,c,d \ne 0\))
Cách 2: Dùng tính chất
Có thể sử dụng tính chất 1 và tính chất 2.
Lời giải chi tiết
a) Cách 1: \(\frac{{ - 15}}{{33}} = \frac{5}{{ - 11}}\) vì \(( - 15).( - 11) = 33.5 = 165\)
Cách 2: \(\frac{{ - 15}}{{33}} = \frac{{ - 15:( - 3)}}{{33:( - 3)}} = \frac{5}{{ - 11}}\)
b) Cách 1: \(\frac{7}{{ - 12}} = \frac{{35}}{{ - 60}}\) vì \(7.( - 60) = ( - 12).35 = - 420\)
Cách 2: \(\frac{7}{{ - 12}} = \frac{{7.5}}{{\left( { - 12} \right).5}} = \frac{{35}}{{ - 60}}\)
c) Cách 1: \(\frac{{ - 8}}{{14}} = \frac{{12}}{{ - 21}}\) vì \(( - 8).( - 21) = 14.12 = 168\)
Cách 2: \(\frac{{ - 8}}{{14}} = \frac{{ - 8:2}}{{14:2}} = \frac{{ - 4}}{7} = \frac{{\left( { - 4} \right).\left( { - 3} \right)}}{{7.\left( { - 3} \right)}} = \frac{{12}}{{ - 21}}\)