Giải bài 6.21 trang 19 SGK Toán 8 tập 2 - Kết nối tri thức
Thực hiện các phép tính sau:
Đề bài
Thực hiện các phép tính sau:
a) \(\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}}\)
b) \(\frac{x}{{x - y}} - \frac{y}{{x + y}}\)
c) \(\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}}\)
Phương pháp giải - Xem chi tiết
Thực hiện theo quy tắc trừ hai phân thức
Lời giải chi tiết
a) \(\frac{{5 - 3x}}{{x + 1}} - \frac{{ - 2 + 5x}}{{x + 1}} \) \( = \frac{{5 - 3{\rm{x - }}\left( { - 2 + 5x} \right)}}{{x + 1}} \) \( = \frac{{5 - 3x + 2 - 5x}}{{x + 1}} \) \( = \frac{{7 - 8x}}{{x + 1}}\)
b) \(\frac{x}{{x - y}} - \frac{y}{{x + y}} \) \( = \frac{{x\left( {x + y} \right) - y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} \) \( = \frac{{{x^2} + xy - xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} \) \( = \frac{{{x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\)
c) \(\frac{3}{{x + 1}} - \frac{{2 + 3x}}{{{x^3} + 1}} \) \( = \frac{3}{{x + 1}} - \frac{{2 + 3x}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \) \( = \frac{{3\left( {{x^2} - x + 1} \right) - 2 - 3x}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \) \( = \frac{{3{x^2} - 3x + 3 - 2 - 3x}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \) \( = \frac{{3{x^2} - 6x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\)