Giải bài toán bằng cách lập phương trình Có hai loại dung — Không quảng cáo

Giải bài toán bằng cách lập phương trình Có hai loại dung dịch muối I và II Người ta hòa 200 gam dung dịch muối I với 300 gam dung


Đề bài

Giải bài toán bằng cách lập phương trình

Có hai loại dung dịch muối I và II. Người ta hòa 200 gam dung dịch muối I với 300 gam dung dịch muối II thì được một dung dịch có nồng độ muối là 33%. Tính nồng độ muối trong dung dịch I và II, biết rằng nồng độ muối trong dung dịch I lớn hơn nồng độ muối trong dung dịch II là 20%.

Phương pháp giải

Giải bài toán bằng cách lập phương trình.

Gọi nồng độ muối trong dung dịch I là x (%) (x > 0)

Biểu diễn nồng độ muối trong dung dịch II, khối lượng muối trong hai dung dịch theo x và lập phương trình (Sử dụng công thức \(C\%  = \frac{{{m_{ct}}.100\% }}{{{m_{hh}}}}\)).

Giải phương trình và kiểm tra nghiệm.

Gọi nồng độ muối trong dung dịch I là \(x\left( \%  \right)\left( {x > 0} \right)\).

Khi đó khối lượng muối có trong dung dịch I là:

\(200.x\%  = 200\frac{x}{{100}} = 2x\)(g).

Do nồng độ muối trong dung dịch I lớn hơn nồng độ muối trong dung dịch II là 20% nên nồng độ muối trong dung dịch II là \(x - 20\left( \%  \right)\)

Khi đó khối lượng muối có trong dung dịch II là:

\(300.\left( {x - 20} \right)\%  = 300.\frac{{x - 20}}{{100}} = 3\left( {x - 20} \right)\)(g).

Khối lượng muối trong dung dịch sau khi trộn hai dung dịch là:

\(2x + 3\left( {x - 20} \right)\)(g).

Khối lượng dung dịch muối sau khi trộn hai dung dịch là: \(200 + 300 = 500\)(g).

Do sau khi trộn hai dung dịch I và II thì được một dung dịch có nồng độ muối là 33% nên ta có phương trình: \(\frac{{2x + 3\left( {x - 20} \right)}}{{500}}.100\%  = 33\% \) hay \(2x + 3\left( {x - 20} \right) = 165\)

Giải phương trình ta được \(x = 45\)(thỏa mãn).

Suy ra nồng độ muối trong dung dịch II là: \(40 - 20 = 25\left( \%  \right)\)

Vậy nồng độ muối của dung dịch I và II lần lượt là 45% và 25%.