Giải các phương trình sau: A 2x - 4 = 3x + 1 b 75 - X = 11 — Không quảng cáo

Giải các phương trình sau a) \(2x - 4 = 3x + 1\) b) \(7\left( {5 - X} \right) = 11 - 5x\) c) \(\frac{5}{6} + \frac{x}{4} = 2


Đề bài

Giải các phương trình sau:

a) \(2x - 4 = 3x + 1\)

b) \(7\left( {5 - x} \right) = 11 - 5x\)

c) \(\frac{5}{6} + \frac{x}{4} = 2 - \frac{x}{3}\)

d) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{{1 + 3x}}{4} + \frac{1}{2}\)

Phương pháp giải

a, b) Đưa phương trình về dạng \(ax + b = 0\) để giải.

c, d) Quy đồng bỏ mẫu đưa phương trình về dạng \(ax + b = 0\) để giải.

a) \(2x - 4 = 3x + 1\)

\(\begin{array}{l}2x - 3x = 1 + 4\\ - x = 5\\x =  - 5\end{array}\)

Vậy \(x =  - 5\).

b) \(7\left( {5 - x} \right) = 11 - 5x\)

\(\begin{array}{l}35 - 7x = 11 - 5x\\ - 7x + 5x = 11 - 35\\ - 2x =  - 24\\x = 12\end{array}\)

Vậy \(x = 12\).

c) \(\frac{5}{6} + \frac{x}{4} = 2 - \frac{x}{3}\)

\(\begin{array}{l}\frac{{10}}{{12}} + \frac{{3x}}{{12}} = \frac{{24}}{{12}} - \frac{{4x}}{{12}}\\10 + 3x = 24 - 4x\\3x + 4x = 24 - 10\\7x = 14\\x = 2\end{array}\)

Vậy \(x = 2\).

d) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{{1 + 3x}}{5} + \frac{1}{2}\)

\(\begin{array}{l}\frac{{10.2\left( {x + 1} \right)}}{{30}} = \frac{{6\left( {1 + 3x} \right)}}{{30}} + \frac{{15}}{{30}}\\20\left( {x + 1} \right) = 6\left( {1 + 3x} \right) + 15\\20x + 20 = 6 + 18x + 15\\20x - 18x = 6 + 15 - 20\\2x = 1\\x = \frac{1}{2}\end{array}\)

Vậy \(x = \frac{1}{2}\).