Giải các phương trình sau: A 7 - 2x + 4 = - X + 4 b 1 — Không quảng cáo

1 Giải các phương trình sau a) \(7 - \left( {2x + 4} \right) = - \left( {x + 4} \right)\) b) \(\frac{{1 - 3x}}{6} + x - 1 =


Đề bài

1. Giải các phương trình sau:

a) \(7 - \left( {2x + 4} \right) = - \left( {x + 4} \right)\)

b) \(\frac{{1 - 3x}}{6} + x - 1 = \frac{{x + 2}}{2}\)

2. Cho hai hàm số \(d:y = x + 3\) và \(d':y = \left( {m - 2} \right)x + 1\) (m là tham số).

a) Với giá trị nào của m thì đồ thị hàm số d’ đi qua điểm \(M\left( {3; - 2} \right)\)

b) Với giá trị nào của m thì đồ thị hàm số trên là hai đường thẳng cắt nhau.

Phương pháp giải

1. Đưa phương trình về dạng \(ax + b = 0\) để giải.

2. a) Thay tọa độ điểm \(M\left( {3; - 2} \right)\) vào hàm số để tìm m.

b) Hai đường thẳng cắt nhau nếu hệ số góc của chúng không bằng nhau.

1. a) \(7 - \left( {2x + 4} \right) = - \left( {x + 4} \right)\)

\(\begin{array}{l}7 - 2x - 4 =  - x - 4\\ - 2x + x =  - 4 - 7 + 4\\ - x =  - 7\\x = 7\end{array}\)

Vậy \(x = 7\)z

b) \(\frac{{1 - 3x}}{6} + x - 1 = \frac{{x + 2}}{2}\)

\(\begin{array}{l}\frac{{1 - 3x}}{6} + \frac{{6\left( {x - 1} \right)}}{6} = \frac{{3\left( {x + 2} \right)}}{6}\\1 - 3x + 6x - 6 = 3x + 6\\ - 3x + 6x - 3x = 6 + 6 - 1\end{array}\)

\(0 = 11\) (vô lý)

Vậy phương trình vô nghiệm.

2. a) Đồ thị hàm số d’ đi qua điểm \(M\left( {3; - 2} \right)\) nên ta có:

\(\begin{array}{l} - 2 = \left( {m - 2} \right).3 + 1\\ - 2 = 3m - 6 + 1\\3m =  - 2 + 6 - 1\\3m = 3\\m = 1\end{array}\)

Vậy với m = 1 thì đồ thị hàm số d’ đi qua điểm \(M\left( {3; - 2} \right)\)

b) Để hàm số \(d:y = x + 3\) và \(d':y = \left( {m - 2} \right)x + 1\) cắt nhau thì:

1 = m – 2

m = 3

Vậy với m = 3 thì hàm số \(d:y = x + 3\) và \(d':y = \left( {m - 2} \right)x + 1\) cắt nhau.