Giải các phương trình sau: A 9x + 5/6 = 1 - 6 + 3x/8;b x + — Không quảng cáo

Giải các phương trình sau a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\) b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\) c) \(\frac{{2\left( {x + 1}


Đề bài

Giải các phương trình sau: a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\); b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\); c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} - \frac{{1 - 2x}}{4}\).

Phương pháp giải

- Chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó (Quy tấc chuyển vế);

- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\)

\(\frac{{4\left( {9x + 5} \right)}}{{24}} = \frac{{24}}{{24}} - \frac{{3\left( {6 + 3x} \right)}}{{24}}\)

\(36x + 20 = 24 - 18 - 9x\)

\(36x + 9x = 6 - 20\)

\(45x = - 14\) \(x = \frac{{ - 14}}{{45}}\)

Vậy \(x = \frac{{ - 14}}{{45}}\) b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\)

\(\frac{{5(x + 1)}}{20} = \frac{10}{20} + \frac{{4(2x + 1)}}{5}\)

\(5x + 5 = 10 + 8x + 4\) \(5x - 8x = 14 - 5\)

\( - 3x = 9\)

\(x = - 3\)

Vậy \(x = - 3\) c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} - \frac{{1 - 2x}}{4}\) \(\frac{{8\left( {x + 1} \right)}}{{12}} = \frac{{18}}{{12}} - \frac{{3\left( {1 - 2x} \right)}}{{12}}\) \(8x + 8 = 18 - 3 + 6x\) \(8x - 6x = 15 - 8\) \(2x = 7\) \(x = \frac{7}{2}\) Vậy \(x = \frac{7}{2}\)