Giải mục 1 trang 79, 80 SGK Toán 8 tập 2 - Kết nối tri thức — Không quảng cáo

Toán 8, giải toán lớp 8 kết nối tri thức với cuộc sống Bài 33. Hai tam giác đồng dạng Toán 8 kết nối tri thức


Giải mục 1 trang 79, 80 SGK Toán 8 tập 2 - Kết nối tri thức

Trong hình 9.2, ΔABC và ΔABC là hai tam giác

HĐ1

Trong hình 9.2, ΔABC ΔDEF là hai tam giác có các cạnh tương ứng song song và các góc tương ứng bằng nhau, tức là AB // DE, AC // DF, BC // EF và \(\widehat A = \widehat D{,^{}}\widehat B = \widehat E{;^{}}\widehat C = \widehat F\)

Nhìn hình vẽ, hãy cho biết giá trị các tỉ số sau: \(\frac{{AB}}{{DE}}{;^{}}\frac{{BC}}{{EF}}{;^{}}\frac{{AC}}{{DF}}\)

Phương pháp giải:

Quan sát hình vẽ để tính các tỉ số

Lời giải chi tiết:

Ta có: \(\frac{{AB}}{{DE}} = 2{;^{}}\frac{{BC}}{{EF}} = 2{;^{}}\frac{{AC}}{{DF}} = 2\)

LT1

Trong các tam giác được vẽ trên ô lưới vuông, có một cặp tam giác đồng dạng. Hãy chỉ ra cặp tam giác đó, viết đúng kí hiệu đồng dạng và tìm tỉ số đồng dạng của chúng.

Phương pháp giải:

Quan sát hình vẽ để tìm hai tam giác đồng dạng và tỉ số của chúng

Lời giải chi tiết:

ΔABC \(\backsim\) ΔDEF với tỉ số đồng dạng là \(2\)

TTN

Cho \(\Delta ABC \backsim \Delta MNP\) . Chứng minh rằng:

a) Nếu tam giác ABC cân tại A thì tam giác MNP cân tại đỉnh M.

b) Nếu tam giác ABC đều thì tam giác MNP đều.

c) Nếu \(AB \ge AC \ge BC\) thì \(MN \ge MP \ge NP\)

Phương pháp giải:

Sử dụng \(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\)

Lời giải chi tiết:

a) Tam giác ABC tại A nên \(\widehat B = \widehat C\) (1)

\(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\) (2)

Từ (1) và (2) nên \(\widehat N = \widehat P\) suy ra tam giác MNP cân tại M.

b) Vì tam giác ABC là tam giác đều nên \(\widehat A = \widehat B = \widehat C = {60^o}\) (3)

\(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\) (4)

Từ (3) và (4) suy ra \(\widehat M = \widehat N = \widehat P = {60^o}\) nên tam giác MNP là tam giác đều.

c) Vì tam giác ABC có \(AB \ge AC \ge BC\) suy ra \(\widehat C \ge \widehat B \ge \widehat A\) (quan hệ giữa góc và cạnh đối điện) (5)

\(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\) (6)

Từ (5) và (6) suy ra \(\widehat P \ge \widehat N \ge \widehat M\) nên \(MN \ge MP \ge NP\)


Cùng chủ đề:

Giải mục 1 trang 60 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 64, 65 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 67, 68 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 67, 68 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 77, 78 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 79, 80 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 83, 84, 85 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 90 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 93, 94 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 1 trang 93, 94, 95 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 1 trang 98, 99, 100 SGK Toán 8 tập 2 - Kết nối tri thức