Giải mục 2 trang 12, 13, 14, 15 SGK Toán 10 tập 2 - Kết nối tri thức — Không quảng cáo

Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống Bài 16. Hàm số bậc hai Toán 10 Kết nối tri thức


Giải mục 2 trang 12, 13, 14, 15 SGK Toán 10 tập 2 - Kết nối tri thức

Bạn Nam đứng dưới chân cầu vượt ba tầng ở nút giao ngã ba Huế, thuộc thành phố Đà Nẵng để ngắm cảnh cầu vượt (H.6.13) Biết rằng trụ tháp cầu có dạng đường parabol, khoảng cách giữa hai chân trụ tháp khoảng 27 m, chiều cao của trụ tháp tính từ điêm trên mặt đất cách chân trụ tháp 2,26 m là 20 m. Hãy giúp bạn Nam ước lượng ộ cao của đỉnh trụ tháp cầu (so với mặt đất).

HĐ2

Xét hàm số \(y = S(x) =  - 2{x^2} + 20x(0 < x < 10)\)

a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số \(y =  - 2{x^2} + 20x\)trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị \(y =  - 2{x^2} + 20x\) có giống với đồ thị của hàm số \(y =  - 2{x^2}\) hay không?

b) Quan sát dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)  trong Hình 6.10, tìm tọa độ điểm cao nhất của đồ thị.

c) Thực hiện phép biến đổi \(y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\) Hãy cho biết giá trị lớn nhất của diện tích mảnh đất được rào chắn. Từ đó suy ra lời giải của bài toán ở phần mở đầu.

Lời giải chi tiết:

a) Ta có đồ thị hàm số \(y =  - 2{x^2}\)

Nhìn vào 2 đồ thị, ta thấy dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)giống với dạng đồ thị \(y =  - 2{x^2}\)

b) Tọa độ điểm cao nhất là \(\left( {5;50} \right)\)

c) Ta có: \(S(x) = y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\)

\({(x - 5)^2} \ge 0 \Rightarrow  - 2{(x - 5)^2} + 50 \le 50 \Rightarrow S(x) \le 50\)

Do đó diện tích lớn nhất của mảnh đất rào chắn là 50 \(({m^2})\) khi x=5

HĐ3

Tương tự HĐ2, ta có dạng đồ thị của một số hàm số bậc hai sau.

Từ các đồ thị trên, hãy hoàn thành bảng sau đây.

Lời giải chi tiết:

Luyện tập 2

Vẽ parabol \(y = 3{x^2} - 10x + 7\). Từ đó tìm khoảng đồng biến, nghịch biến và giá trị nhỏ nhất của hàm số \(y = 3{x^2} - 10x + 7\).

Phương pháp giải:

-Vẽ đồ thị \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)

Là 1 parabol có đỉnh là điểm \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\), có trục đối xứng là đường thẳng \(x =  - \frac{b}{{2a}}\)

Quay bề lõm lên trên nếu a>0, quay bề lõm xuống dưới nếu a<0

Xác định 1 vài điểm đặc biệt đồ thị đi qua

- Quan sát đồ thị hàm số trên (a;b)

Hàm số đồng biến nếu đồ thị có dạng đi lên từ trái sang phải.

Hàm số nghịch biến nếu đồ thị có dạng đi xuống từ trái sang phải

- giá trị nhỏ nhất của hàm số là điểm có vị trí thấp nhất trên đồ thị

Lời giải chi tiết:

Vẽ đồ thi \(y = 3{x^2} - 10x + 7\)

- Có đỉnh \(\)\(I\left( {\frac{5}{3}; - \frac{4}{3}} \right)\), có trục đối xứng là đường thẳng \(x = \frac{5}{3}\)

- Đi qua điểm \((0;7);\left( {1;0} \right)\)

- Hàm số nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{3}} \right)\); đồng biến trên khoảng \(\left( {\frac{5}{3}; + \infty } \right)\)

- Giá trị nhỏ nhất của hàm số là tại điểm có tọa độ \(\left( {\frac{5}{3}; - \frac{4}{3}} \right)\)

Vận dụng 2

Bạn Nam đứng dưới chân cầu vượt ba tầng ở nút giao ngã ba Huế, thuộc thành phố Đà Nẵng để ngắm cảnh cầu vượt (H.6.13) Biết rằng trụ tháp cầu có dạng đường parabol, khoảng cách giữa hai chân trụ tháp khoảng 27 m, chiều cao của trụ tháp tính từ điêm trên mặt đất cách chân trụ tháp 2,26 m là 20 m. Hãy giúp bạn Nam ước lượng ộ cao của đỉnh trụ tháp cầu (so với mặt đất).

Phương pháp giải:

Chọn hệ trục tọa độ Oxy sao cho một chân trụ tháp đặt tại gốc tọa độ, chân còn lại đặt trên tia Ox. Khi đó trụ tháp là một phần của đồ thị hàm số dạng \(y = a{x^2} + bx\)

Ta đi tìm a, b và suy ra đỉnh của đồ thị hàm số

Lời giải chi tiết:

Đồ thị \(y = a{x^2} + bx\) đi qua điểm có tọa độ (2,26;20) và (27;0)

Nên ta có \(\begin{array}{l}a.{(2,26)^2} + b.2,26 = 20\\a{.27^2} + b.27 = 0\end{array}\)\( \Leftrightarrow \)\(\begin{array}{l}a \approx  - 0,358\\b \approx 9,666\end{array}\)

Do đó ta có hàm số \(y =  - 0,358{x^2} + 9,666x\)

Tọa độ đỉnh là \(x = \frac{{ - b}}{{2a}} = 13,5\); \(y = 65,2455\)

Vậy độ cao của đỉnh trụ tháp cầu so với mặt đất khoảng 65,2455m


Cùng chủ đề:

Giải mục 1 trang 84, 85, 86 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 1 trang 92, 93, 94, 95 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 1 trang 96, 97 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 2 trang 7 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 2 trang 7 SGK Toán 10 tập 2 - Kết nối tri thức
Giải mục 2 trang 12, 13, 14, 15 SGK Toán 10 tập 2 - Kết nối tri thức
Giải mục 2 trang 15, 16 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 2 trang 22, 23 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 2 trang 22, 23 SGK Toán 10 tập 2 - Kết nối tri thức
Giải mục 2 trang 25, 26 SGK Toán 10 tập 2 - Kết nối tri thức
Giải mục 2 trang 28, 29 SGK Toán 10 tập 1 - Kết nối tri thức