Processing math: 11%

Giải mục 3 trang 88, 89 SGK Toán 8 tập 2 - Kết nối tri thức — Không quảng cáo

Toán 8, giải toán lớp 8 kết nối tri thức với cuộc sống Bài 34. Ba trường hợp đồng dạng của hai tam giác Toán 8


Giải mục 3 trang 88, 89 SGK Toán 8 tập 2 - Kết nối tri thức

Bạn Tròn đang đứng ở vị trí điểm A

HĐ3

Bạn Tròn đang đứng ở vị trí điểm A bên bờ sông và nhờ anh Pi tính giúp khoảng cách từ chỗ mình đứng đến chân một cột cờ tại điểm C bên kia sông (H.9.20a). Anh Pi lấy một vị trí B sao cho AB = 10 m , ^ABC=70o,^BAC=80o và vẽ một tam giác A'B'C' trên giấy với A B ′= 2 cm , ^ABC=70o;^BAC=80o (H.9.20b)

Em hãy dự đoán xem tam giác A'B'C' có đồng dạng với tam giác ABC không? nếu có thì tỉ số đồng dạng là bao nhiêu

Phương pháp giải:

Quan sát hình 9.20 để trả lời câu hỏi.

Lời giải chi tiết:

Tam giác A'B'C' đồng dạng với tam giác ABC với tỉ số đồng dạng 15

HĐ4

Nếu ΔABC ΔA B C và anh Pi đo được A C ′= 3 , 76 cm thì khoảng cách từ bạn Tròn đến chân cột cờ là bao nhiêu mét?

Phương pháp giải:

Dựa vào tỉ số đồng dạng của hai tam giác, tính khoảng cách từ bạn Tròn đến chân cột cờ.

Lời giải chi tiết:

Có ΔA'B'C' ΔABC với tỉ số đồng dạng là 15

ABAB=ACAC=BCBC=15

mà A′C′=3,76 (m) => AC=18,8 (m)

Khoảng cách từ bạn Tròn đến chân cột cờ là 18,8 m.

CH

Những cặp tam giác nào trong hình 9.22 là đồng dạng? Viết đúng kí hiệu đồng dạng

Phương pháp giải:

Quan sát hình 9.22 và vận dụng trường hợp đồng dạng thứ ba của tam giác

Lời giải chi tiết:

Xét tam giác MPN có: ˆP=180oˆMˆN=180o60o70o=50o

Các cặp tam giác đồng dạng trong hình 9.22 là: ΔACB

LT3

Cho các điểm A, B, C, D như Hình 9.24. Biết rằng \widehat {ABC} = \widehat {A{\rm{D}}B} . Hãy chứng minh ΔABC ΔADB A{B^2} = A{\rm{D}}.AC

Phương pháp giải:

Chứng minh ΔABC ΔADB (g.g) suy ra tỉ số đồng dạng

Lời giải chi tiết:

Xét tam giác ABC và tam giác ADB có

\widehat {ABC} = \widehat {A{\rm{D}}B} \widehat A chung

=> ΔABC ΔADB (g.g)

=> \frac{{AB}}{{AD}} = \frac{{AC}}{{AB}}

=> A{B^2} = A{\rm{D}}.AC

TTN

1. Biết rằng ba đường phân giác của tam giác ABC đồng quy tại I, ba đường phân giác của tam giác A'B'C' đồng quy tại I'. Hãy chứng tỏ rằng nếu \widehat {A'I'B'} = \widehat {AIB} \widehat {A'I'C'} = \widehat {AIC} thì \Delta A'B'C' \backsim \Delta ABC .

2. Với  hai tam giác ABC và A'B'C' trong phần Tranh luận, nếu thêm giả thiết các góc C và C' nhọn thì hai tam giác đó có đồng dạng không?

Phương pháp giải:

1. Chứng minh tam giác ABC và tam giác A'B'C' đồng dạng theo trường hợp góc - góc.

2. Tương tự như phần Tranh luận, lấy điểm M trên tia BC sao cho \Delta ABM \backsim \Delta A'B'C' . Giả sử điểm C không trùng với M và chứng minh điều đó là vô lý => Điểm C phải trùng với M và  \Delta A'B'C' \backsim \Delta ABC

Lời giải chi tiết:

1. Do tổng các góc trong một tam giác bằng 180^{\circ} nên:

\frac{\widehat{A^{\prime}}+\widehat{B^{\prime}}}{2}=180^{\circ}-\widehat{A^{\prime} I^{\prime} B^{\prime}}=180^{\circ}-\widehat{A I B}=\frac{\widehat{A}+\widehat{B}}{2} \text {. }

Suy ra \widehat{A^{\prime}}+\widehat{B^{\prime}}=\widehat{A}+\widehat{B}. Do đó \widehat{C^{\prime}}=180^{\circ}-\widehat{A^{\prime}}-\widehat{B^{\prime}}=180^{\circ}-\widehat{A}-\widehat{B}=\widehat{C} \text {. }

Tương tự, \widehat{B^{\prime}}=\widehat{B}. Vậy \triangle A^{\prime} B^{\prime} C^{\prime}\triangle A B C có: \widehat{B^{\prime}}=\widehat{B}, \widehat{C^{\prime}}=\widehat{C}. Do đó \triangle A^{\prime} B^{\prime} C^{\prime} \backsim \triangle A B C (g.g).

2. Nếu góc C và C' đều nhọn: Lấy điểm M trên tia B C sao cho \triangle A B M \perp \triangle A^{\prime} B^{\prime} C^{\prime}. Giả sử điểm C không trùng với M. Khi đó: \triangle A^{\prime} B^{\prime} C^{\prime}\triangle A B M nên \frac{A^{\prime} C^{\prime}}{A M}=\frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} C^{\prime}}{A C} và kéo theo A M=A C, hay \triangle A M C cân tại A.

+) Nếu M nằm giữa BC thì \widehat{A M B}=180^{\circ}-\widehat{A M C}

=180^{\circ}-\widehat{A C M}>90^{\circ}>\widehat{A^{\prime} C^{\prime} M^{\prime}} và ta nhận được điều vô lí.

+) Vậy C ở giữa BM (như hình 9.19). Khi đó \widehat{A C B}=180^{\circ}-\widehat{A C M}

=180^{\circ}-\widehat{A M B}=180^{\circ}-\widehat{C}>90^{\circ} và ta nhận được điều vô lí.

Vậy điểm C phải trùng với M\triangle A^{\prime} B^{\prime} C^{\prime} \backsim \triangle A B C.


Cùng chủ đề:

Giải mục 3 trang 31, 32 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 3 trang 31, 32 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 3 trang 43 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 3 trang 44 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 3 trang 54, 55 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 3 trang 88, 89 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 3 trang 95, 96 SGK Toán 8 tập 1 - Kết nối tri thức
Giải mục 4 trang 18, 19 SGK Toán 8 tập 2 - Kết nối tri thức
Giải mục 4 trang 32 SGK Toán 8 tập 1 - Kết nối tri thức
Giải toán 8 Công thức lãi kép trang 111, 112 Kết nối tri thức
Giải toán 8 Luyện tập chung trang 17, 18 Kết nối tri thức