Giải mục III trang 94, 95 SGK Toán 7 tập 2 - Cánh diều
III. Dấu hiệu nhận biết
III. Dấu hiệu nhận biết
HĐ 3
Cho tam giác ABC thỏa mãn \(\widehat B = \widehat C\). Kẻ AH vuông góc với BC, H thuộc BC (Hình 74) .
a) Hai tam giác BAH và CAH có bằng nhau hay không? Vì sao?
b) Hai cạnh AB và AC có bằng nhau hay không? Vì sao?
Phương pháp giải:
a) Xét hai tam giác BAH và CAH theo trường hợp g.c.g.
b) Sử dụng kết quả phần a) để xét hai cạnh AB và AC . Hai tam giác bằng nhau thì các cặp cạnh tương ứng bằng nhau
Lời giải chi tiết:
a) \(\widehat B = \widehat C\). Mà tổng ba góc trong một tam giác bằng 180° nên \(\widehat {BAH} = \widehat {CAH}\).
Xét hai tam giác BAH và CAH có:
\(\widehat {BAH} = \widehat {CAH}\);
AH chung;
\(\widehat {AHB} = \widehat {AHC}\) (= 90°).
Vậy \(\Delta BAH = \Delta CAH\)(g.c.g)
b) \(\Delta BAH = \Delta CAH\) nên AB = AC ( 2 cạnh tương ứng).
LT - VD
Cho tam giác ABC cân tại A . Qua điểm M nằm giữa A và B kẻ đường thẳng song song với BC , cắt cạnh AC tại N . Chứng minh tam giác AMN cân.
Phương pháp giải:
Chứng minh tam giác AMN cân bằng cách chứng minh hai góc AMN và ANM bằng nhau.
Lời giải chi tiết:
Ta có tam giác ABC cân mà MN // BC . Nên \(\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\) (đồng vị)
Mà \(\widehat {ABC} = \widehat {ACB}\)(tam giác ABC cân) nên \(\widehat {AMN} = \widehat {ANM}\).
Vậy tam giác AMN cân tại A ( Tam giác có 2 góc bằng nhau)