Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất hai lần.
a) Không gian mẫu là Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)}.
b) Số phần tử của biến cố A: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10” là \(n(A) = 6\) VÀ Số phần tử của biến cố B: “Mặt 5 chấm xuất hiện ít nhất một lần” là \(n(B) = 11\)
c) Xác suất của biến cố A là \(P(A) = \frac{1}{6}\)
d) Xác suất của biến cố B là \(P(B) = \frac{5}{{36}}\)
a) Không gian mẫu là Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)}.
b) Số phần tử của biến cố A: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10” là \(n(A) = 6\) VÀ Số phần tử của biến cố B: “Mặt 5 chấm xuất hiện ít nhất một lần” là \(n(B) = 11\)
c) Xác suất của biến cố A là \(P(A) = \frac{1}{6}\)
d) Xác suất của biến cố B là \(P(B) = \frac{5}{{36}}\)
Sử dụng các quy tắc tính xác suất của biến cố.
a)Phép thử T: “Gieo một con xúc xắc cân đối và đồng chất hai lần”
Ω={(i,j)∣i,j=1,2,3,4,5,6}
Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
b) A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} nên n(A) = 6
B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)} nên n(B) = 11
c) \(P(A) = \frac{6}{{36}} = \frac{1}{6}\)
d) \(P(B) = \frac{{11}}{{36}}\)