Đề bài
Gọi (d) là tiếp tuyến của đồ thị hàm số\(y = f(x) = - {x^3} + x\) tại điểm\(M( - 2;6).\) Phương trình của (d) là
-
A.
y = -11 x +30.
-
B.
y = 13 x + 34.
-
C.
y = -11 x – 16.
-
D.
y = 13 x – 18.
Phương pháp giải
Phương trình tiếp tuyến với đồ thị (C): \(y = f(x) = - {x^3} + x\) tại điểm \(M({x_0};f({x_0})).\)là:
\(y = f'(x{}_0)(x - x{}_0) + f(x{}_0)\)
Trong đó:
\(M({x_0};f({x_0}))\) gọi là tiếp điểm.
\(k = f'(x{}_0)\)là hệ số góc.
\(y' = f'(x) = \left( { - {x^3} + x} \right)' = - 3{x^2} + 1\)
Phương trình tiếp tuyến của đồ thị \(y = f(x) = - {x^3} + x\)tại điểm \(M({x_0};f({x_0})).\)
\(y' = f'( - 2)(x + 2) + 6 = - 11(x + 2) + 6 = - 11x - 16\)
Đáp án C.
Đáp án : C