Gọi d là tiếp tuyến của đồ thị hàm sốy = fx = - X^3 + x — Không quảng cáo

Gọi (d) là tiếp tuyến của đồ thị hàm số\(y = f(x) = - {x^3} + x\) tại điểm \(M( - 2 6) \) Phương trình của (d) là


Đề bài

Gọi (d) là tiếp tuyến của đồ thị hàm số\(y = f(x) =  - {x^3} + x\) tại điểm \(M( - 2;6).\) Phương trình của (d) là

  • A.
    y = -11 x +30.
  • B.
    y = 13 x + 34.
  • C.
    y = -11 x – 16.
  • D.
    y = 13 x – 18.
Phương pháp giải

Phương trình tiếp tuyến với đồ thị (C): \(y = f(x)\)tại điểm \(M({x_0};f({x_0}))\)là:

\(y = f'({x_0})(x - {x_0}) + f({x_0})\)

Trong đó:

\(M({x_0};f({x_0}))\)gọi là tiếp điểm.

\(k = f'({x_0})\)là hệ số góc.

\(y' = f'(x) = ( - {x^3} + x)' =  - 3{x^2} + 1\)

Phương trình tiếp tuyến của đồ thị \(y = f(x) =  - {x^3} + x\) tại điểm \(M( - 2;6).\)

\(y = f'( - 2)(x + 2) + 6\,\,hay\,\,y =  - 11(x + 2) + 6 =  - 11x - 16\)

Đáp án C.

Đáp án : C