Gọi d1 là đồ thị của hàm số y = mx - 1 và d2 là đồ thị hàm — Không quảng cáo

Gọi \({d_1}\) là đồ thị của hàm số \(y = mx - 1\) và \({d_2}\) là đồ thị hàm số \(y = \frac{1}{2}x + 2\) Để M(2 3) là giao


Đề bài

Gọi \({d_1}\) là đồ thị của hàm số \(y = mx - 1\) và \({d_2}\) là đồ thị hàm số \(y = \frac{1}{2}x + 2\). Để M(2; 3) là giao điểm của \({d_1}\) và \({d_2}\) thì giá trị của m là:

  • A.
    \(m =  - 1\)
  • B.
    \(m = 1\)
  • C.
    \(m = 2\)
  • D.
    \(m =  - 2\)
Phương pháp giải
Để \(M\left( {{x_0};{y_0}} \right)\) là giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) ta thay tọa độ của M vào từng hàm số tương ứng để tìm m.

+ Nhận thấy M thuộc \({d_2}\)

Thay tọa độ M vào \(y = mx - 1\) ta có:

\(3 = m.2 - 1\)

\(2m = 4\)

\(m = 2\)

Đáp án : C