Gọi giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x căn — Không quảng cáo

Đề bài Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống Gọi giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y =


Đề bài
Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Gọi giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\sqrt {1 - {x^2}} \) lần lượt là M, m. Tính M + m.

Đáp án:

Đáp án

Đáp án:

Phương pháp giải

- Tính y’, tìm các nghiệm của y’ = 0.

- Tìm giá trị y tại các điểm cực trị của hàm số và hai đầu mút của đoạn.

Tập xác định: D = [-1;1].

Ta có: \[f'(x) = \sqrt {1 - {x^2}}  - \frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{ - \sqrt 2 }}{2}}\\{x = \frac{{\sqrt 2 }}{2}}\end{array}} \right.\]

f(-1) = f(1) = 0; \(f\left( {\frac{{ - \sqrt 2 }}{2}} \right) = \frac{{ - 1}}{2}\); \(f\left( {\frac{{\sqrt 2 }}{2}} \right) = \frac{1}{2}\).

Vậy \(M + m = \frac{1}{2} + \frac{{ - 1}}{2} = 0\).