Đề bài
Hằng đẳng thức có được bằng cách thực hiện phép nhân \(\left( {A - B} \right).{\left( {A - B} \right)^2}\) là
-
A.
\({\left( {A - B} \right)^3}\;\).
-
B.
\({A^3}\; - 3{A^2}B - 3A{B^2}\; - {B^3}\).
-
C.
\({A^3}\; - {B^3}\).
-
D.
\({A^3} + {B^3}\).
Phương pháp giải
Áp dụng phép nhân hai lũy thừa cùng cơ số: \({x^m}.{x^n} = {x^{m + n}}\,\,\left( {m,\,n \in \mathbb{N}} \right)\)
\(\left( {A - B} \right).{\left( {A - B} \right)^2} = {\left( {A - B} \right)^{1 + 2}} = {\left( {A - B} \right)^3}\)
Đáp án : A