Hãy tìm giá trị nhỏ nhất của biểu thức sau: \(A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}}\)
-
A.
0
-
B.
1
-
C.
2
-
D.
-1
Muốn trừ hai phân thức có cùng mẫu thức ta trừ các tử thức và giữ nguyên mẫu thức.
Điều kiện: \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right.\)
\(\begin{array}{l}A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}} = \left( {\frac{{{x^3}}}{{x - 1}} - \frac{1}{{x - 1}}} \right) - \left( {\frac{{{x^2}}}{{x + 1}} - \frac{1}{{x + 1}}} \right)\\ = \frac{{{x^3} - 1}}{{x - 1}} - \frac{{{x^2} - 1}}{{x + 1}} = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 1}}\\ = \left( {{x^2} + x + 1} \right) - \left( {x - 1} \right) = {x^2} + x + 1 - x + 1 = {x^2} + 2\end{array}\)
Ta có \({x^2} \ge 0\forall x \Rightarrow {x^2} + 2 \ge 2\forall x\) hay \(A \ge 2\)
Dấu “=” xảy ra \( \Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\)
Vậy \(MinA = 0\) khi \(x = 0\).
Đáp án : A