Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết — Không quảng cáo

Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho


Đề bài

Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

  • A.
    7.
  • B.
    8.
  • C.
    9.
  • D.
    10.
Phương pháp giải
Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức \({A^2} - {B^2} = (A - B)(A + B)\).
Ta có:

Gọi hai số lẻ liên tiếp là \(2k-1;2k + 1(k \in N*)\)

Theo bài ra ta có:

\({\left( {2k + 1} \right)^{2}}-{\left( {2k-1} \right)^{2}} = 4{k^2} + 4k + 1-4{k^2} + 4k-1 = 8k \vdots 8,\forall k \in \mathbb{N}*\)

Đáp án : B