Đề bài
Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
-
A.
7.
-
B.
8.
-
C.
9.
-
D.
10.
Phương pháp giải
Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức \({A^2} - {B^2} = (A - B)(A + B)\).
Ta có:
Gọi hai số lẻ liên tiếp là \(2k-1;2k + 1(k \in N*)\)
Theo bài ra ta có:
\({\left( {2k + 1} \right)^{2}}-{\left( {2k-1} \right)^{2}} = 4{k^2} + 4k + 1-4{k^2} + 4k-1 = 8k \vdots 8,\forall k \in \mathbb{N}*\)
Đáp án : B