Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức A=10(x+2)(3−x)−12(3−x)(3+x)−1(x+3)(x+2) tại x=−34?
-
A.
0<A<1
-
B.
A=0
-
C.
A=1
-
D.
A=74
Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
Thay phép trừ bằng phép cộng với phân thức đối.
A=10(x+2)(3−x)−12(3−x)(3+x)−1(x+3)(x+2)=10(x+2)(3−x)−[12(3−x)(3+x)+1(x+3)(x+2)]=10(x+2)(3−x)−[12(x+2)+(3−x)(3−x)(x+3)(x+2)]=10(x+2)(3−x)−[12x+24+3−x(3−x)(x+3)(x+2)]=10(x+2)(3−x)−11x+27(3−x)(x+3)(x+2)=10(x+3)(3−x)(x+2)(x+3)−11x+27(3−x)(x+2)(x+3)=10(x+3)−(11x+27)(3−x)(x+2)(x+3)=10x+30−11x−27(3−x)(x+2)(x+3)=−x+3(3−x)(x+2)(x+3)=1(x+2)(x+3)
Tại x=−34 ta có A=1(−34+2)(−34+3)=154⋅94=14516=1645
Vậy 0<A<1.
Đáp án : A